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Abstract
We show that the family of sequences defined by

hnt2 = hpt1 + (hn)m where m > 1,hg =0,h1 =1 (1)

exhibits superexponential asymptotic behavior. That is, for large k we
2k 2k+1

have hor = (Am)Y™  and hagt1 = (Bm)V™ ™' where A,, and B,, are

functions of m.

Introduction: It has long been known that the standard Fibonacci num-
bers satisfy exponential asymptotics. More specifically, if F, represents the

n
nt" Fibonacci number, then for large n we have F,, =~ \/ig (% . Further-

more, many variations of the Fibonacci numbers have been studied. For ex-
ample, [1] studies the m = 2 case of (1) and finds that hop, ~ AVD™" and
Bons1 ~ BYD™ ™ for large n, where A = 1.436 + .001 and B = 1.451 & .001.
This article is an extension of the methods used in that paper. Here, we prove
that their techniques are not just unique to the m = 2 case, rather, they apply
for all m > 1.

Lemma 1 Ifn > 1 then 0 < hyy1 < hpyy < 2(hy)™.

Proof. Since h,, is certainly increasing, for n > 1 we have hy, 1 = hy+(hp_1)™ <
hn + (hy,)™ and since m > 1 then hyy1 < (hp)™ + (hy)™ = 2(hy,)™ R

For further investigation of the sequence we write

hn+1
n = Nn m1 )
h +2 (h ) ( + (hn)m) n >0

*Thanks to Professor Greenfield for his assistance in making this possible and the Rutgers
Undergraduate Reaseach Fellows Program for its assistance as well.
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and define a new sequence o, = 1 + e "+1 for n > 0. Then for any n > 0 we
have

and so on. So, if n is even, it follows that
k—1 k—2 k—3
hzk = (].)m (OéQ)m (a4)m N 8 DT
Which leads to the natural definition a9 = 1 and allows us to write

k-1

k—j—1
2k = H(a2j)m ’

=0
k—1

= exp Z log(agj)mk_j

§=0

-1

( log O2;
= exp R

ok log Qaj
= exp \/— Z J

mitl
2k

= log v

_ 25

= | exp Z ) . (2)
Jj=0

Next, we define the growth constant A,, by
= log
log Ay = ZO mitl 3)
j=

Thus, it seems plausible to expect that for large enough k£ we might have hoy =~
(Am)\/m%. Next, proceeding as before but treating odd subscripts instead of
even shows that

m2k+1
log a2j41
2k+1 = | €XP \/_ Z m.7+]1+ (4)
and leads to defining the growth constant B,, by
— log Q241
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Similar to our expectation about A,,, definition (5) may lead to the suspicion
that hopy1 = (Bm)\/m%Jrl for large k.

It is worthwhile to know whether the series (3) and (5) actually make sense,
that is, that they even converge. Also, it will be important for later purposes to
obtain an error estimate when approximating A,, and B,, through only finitely
many terms.

Lemma 2 The series that define log A, and log B, converge and all partial

sums of the first N terms are within Mf’%(fnil) of the actual sums.

Proof. From lemma 1 we have 0 < hp41 < 2(hy,)™ for n > 1 so, by definition of

an, wehave 1 < a, =1+ (h"J)r}n <1+ Q(h") = 3. Hence, 0 < loga, < log3
for all n. Therefore,

X log Qw; > log3
log Am = Z RIS S Z mi+1 (6)
7=0 §=0
and -
log log a1 log3
log B = \/— Z i S Z it (7)
7=0

Since m > 1, this shows that the series defining log A,, and log B, (which
both have non-negative terms) are bounded by convergent geometric series.
Therefore, they must converge.

Using the bound by the geometric series, we may make the following bounds
on the greatest possible error in approximating A,, and B,, using N terms:

= log3
lerror| < Z ——

+1
j=N+1 m’
_ log3 ( 1 )
= 1
mN+2 ].—E
_ log3d m
C omNt2 g —1
1
_ og3 -

mN+1(m - 1)

We note that the preceding actually gives the following:

Theorem 1 The growth constants are continuous functions of m for m €
(1,00).

Proof. This follows essentially immediately from the previous lemma: the partial
sums (which are continuous functions of m) certainly converge uniformly on
(14 6, 00) for any 6 > 0. The theorem follows. H
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It is of possible interest to ask what happens to the growth constants A,,
and B, as m gets large.

Theorem 2 The growth constants A, and B,, both — 1 as m — oo.

Proof. From equations (6) and (7), we may bound the series that define log A,
and log B,,, as follows

> log3
logAm 2 logBmSZmJ+1
j=0
__log3 1
- om \1-1
_log3 m
T om m-—1
_ log3
T m-—-1"

Since in—"g_—?i certainly — 0 as m — oo, the theorem is proved. B

With the aid of the following lemma, we will justify our claims about the
asymptotics.

hn—l
hn

Lemma 3 For n > 3 we have <

Wi

Proof. By lemma 1, we have for n > 1, hpp1 < 2(hy,)™. So for n > 3 we have
hn—1 < 2(hp—2)™. Dividing by 2 and adding h,—1 to both sides gives

3
0< ihn—l <hpo1+ (hn—2)m = hy.

Taking reciprocals yields
1

1
hn hnfl )
Finally, multiplication by h,_;1 gives the desired result. B

0<

<

Wl

Theorem 3 The sequence {h,}>2, satisfies superezponential asymptotics. That
2n, on+1

is, for large n, ho, & (Am)‘/m and hapy1 & (Bm)‘/m . Which, stated more

precisely, means

2n . h2n+1

A A~ (e b
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Proof. First consider the limit involving the even subscripts:

n n—1 log agj
on exp (m D=0 it

(Am)mzn a exp (m" See log an)

=0 TmiF1

oo
=exp | — Z m" I log az;

Jj=n
Note: In order to justify the justify the conjecture, it is necessary to show that
0 .
Z mn—I-1 logas; — 0 as n — oo.
j=n
We proceed. First, since log(1 + z) < z for 2 > 0, then by definition of a,

we have 0 < log ap; < (';ZZSBH So, we get

= = 1 h
n—j—1 . n 2j+1
Zm log az; <m Z mit1 (hy;)m
j=n j=n
B
By lemma 3, we have =

(hZ—:l)m < (3)™ < %. Now, since m > 1 and the sequence hy, is strictly

increasing for n > 3, it follows that the sequence (hn)% — 0 asn — oco. Hence,

hn_1
han

< % for n > 3. So, since m > 1, it follows that

m «
there exist ng such that n > ng implies (’;L"“)L}n = )1m_1 + ( < % +e

for any € > 0. In particular, for large enough n we have

h g1 < (hog)™.

Which can be written as

A

m'n. m'n. m
— log a ( — log a
2j+1 2j
exp E oy exp E oy

§=0 §=0

Which, since both the exponential and power functions are injective, certainly

implies
! log a2 +1 ! log aa; 8
e ) D (8)
=0 =0

for all n sufficiently large. Hence, provided this strict inequality is maintained
as n — oo (which will be shown), there exist N such that whenever n > N we
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have
n—1 n—1
1 j 1 1 -
LT R g
— mJ m"tl(m — 1) = m
j= -

since % — 0 as n — oo for any m. Note that conidtions (9) and (8)
are equivalent. At this point, let us define a set E as the set of all m such that
condition (9) is satisfied for all real x > m. We will show that E is nonempty,
specifically, that 3.71 € E. From lemma 2, we found that log a;,, < log3 for all

n so we may overestimate the left hand side of (9) as follows

n—1

logasjt1 _ logog 1 1
Z mj+1 S m +10g3 W'ﬁ‘ﬁ'{‘...

3=0
_log2 log3 1
=T T (1—%)
__log2 log 3
m m(m-—1)

Similarly, we make the following underestimate of the right hand side of (9)

n—1

Z longj S logﬁzo n loga
“ mJ m m
J=0
1
—log 1+ log3
m
__log3
-

Therefore, if it is the case that

log 2 1 1

og n og 3 < 0g3’
m m(m — 1) m

then (9) is true. Solving the previous equation for m shows that whenever

log 3

log %

m > +1=3.71,

then (9) is certainly true. Therefore, it follows that 3.71 € E and that E is
nonempty. Also, by definition, it is clear that F is lowerbounded by 1 so that
inf F exists. Let v = inf E. It follows from the previous discussion that 1 < v.
Suppose v > 1. Let § = (v —1)/2. Now let us define two sequences of functions

frign: (1+4,00) = R
by
"~ log azji1
fa(m)=>" Tt
j=0
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and

" log aa;
gn(m) = Z —g .ZJ

mJ
Jj=0

By lemma (2) we found that f,, and g,, actually make sense and also converge.
Say that f, — f and g, — g. Lemma (2) also says that f, and g,, are within
mT}ﬂ%f’nTI) of f and g, respecfully, for N < n. It follows then that {f,} and {gn}

are uniformly convergent on (1 + 4, 00). Also, by their constructions, lofn S2itt

and lofn# are continuous on (1 + 4, 00) for every j. Therefore, since {f,} and
{gn} are uniformly convergent series of continuous functions on (1 + 4, 00), it
follows that f and g themselves are continous on (1 + §, 00).

Set h(m) = g(m) — f(m). It should be clear that h(m) > 0 is equivalent to
saying m € E. Now, by the definition of inf E, we may find a sequence of points
{z,} in E such that z,, — v and h(z,) > 0 for every n. So, by the continuity of
h (which is clearly continuous, being the difference of two continuous functions)
it follows that h(v) > 0. But continuity allows us to go a bit further and pick
up € > 0 such that v —e € (14 §,00) and h(v — €) > 0. Therefore v — € € E
which contradicts the fact that v = inf E. Therefore, it follows that v = 1 and
that condition (9) holds for all m > 1.

At this point we define

= log a
— 25
A, = exp E . i
J:

and
N-1

. log ap; log 3
A" =exp Z mit+l + m& (m — 1)
3=0

So, by definition of A,,, and the error estimates obtained in lemma, 2, it follows
that A, < A4,, < A . Likewise, we define

108; log a2j+1

B, = = exp \/_ Z mJit1

and

log 0241 log 3

B* = exp \/—Z pRyS ] mN(m —1)

Hence, by definition of B,, and the error estimates obtained, it is clear that
B, < B,, < B*. So, by equation (2), for all j > N we have

(A)V™ < gy < (AF)VT.
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Similarly, from equation (4), for all j > N we have
(B <o < (BT

Therefore,
hajt1 (B"‘)\/#]:+1
(h2j)™ = ((A)Vm™)m
B* \/HH—1
B ((A*W) '

Expanding the argument of the previous expression reveals

1 N-—-1 lOg Q2541 log3
B* €xp (x/m Ej:(] mi+l + mN(m—1)

(4 v exp im Y, )

Jj=0

N-1 N-1

_ / 1 log Q2541 IOg 3 Qgj
- P ﬁz mit1 +mN(m—1)_\/m mitt

Jj=0 Jj=0

Dividing (9) by 4/m shows that the argument of the previous expression is
negative. Whence,
B*

0< —=<1
(As)vm

Let C = %. Then, for j > N we have (’;122’5}" < OV Now since m > 1

we may take j so large that \/ﬁj LS j- So, for j sufficiently large we then
have

hajn vt o

(hoj)™
Consequently, for n sufficiently large we then have

o o0

log aa; 1 .
n J n J
m E i <m E j+10

j=n j=n

1 . 1
-2 (7g)

And since 0 < C' < 1 this certainly approaches 0 as n — oo, verifying the first
limit statement. The second, for odd integers, follows similarly. B
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