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Abstract 

Guiding image segmentation with edge information is 

an often employed strategy in low level computer vision. 

To improve the trade-off between the sensitivity of 

homogeneous region delineation and the 

oversegmentation of the image, we have incorporated a 

recently proposed edge magnitude/confidence map into a 

color image segmenter based on the mean shift procedure. 

The new method can recover regions with weak but sharp 

boundaries and thus can provide a more accurate input for 

high level interpretation modules. The Edge Detection and 

Image SegmentatiON (EDISON) system, available for 

download, 

implementstheproposedtechniqueandprovidesacompleteto

olbox for discontinuitypreservingfiltering, 

segmentationand edge detection. 

1 Introduction 
Two of the most important low level vision operations 

are image segmentation and edge detection. In this paper 

both are considered to be based on the same, piecewise 

constant image structure model. The two operations are 

complementary in nature. Image segmentation focuses on 

global information and labels the input into homogeneous 

regions. Edge detection, on the other hand, focuses on local 

information and labels the pixels which are assumed to be 

located at discontinuities. In principle, both operations 

should give the same result, the edges corresponding to the 

boundaries of the homogeneous regions. In practice, 

however, the results differ significantly since local and 

global evidence may lead to different conclusions. 

Combining the outputs of image segmentation and edge 

detection to improve the quality of the segmented image, 

is an old idea. In a recent survey paper [5] seven different 

strategies were distinguished for combining similarity 

(region) and discontinuity (edge) information. They were 

divided into two classes: embedded integration and 

postprocessing integration. In the former case the 

discontinuity information is used during the delineation 

process, while in the latter case it is employed only to 

control the fusion and/or refinement of already delineated 

patches. Both approaches are present in the technique we 

are proposing, since the information provided by the edge 

detector is integrated differently into the two modules of 

the image segmenter: filtering and fusion. 

The discontinuity and homogeneity informations were 

associated in many different ways in the lierature, here 

we only mention a few of the approaches. Region 

growing can be guided by the edge map, e.g., [8] [12] for 

gray level, and [4] for color images. (Note that the 

extensive anisotropic diffusion literature usually targets 

the issue of image smoothing and not segmentation.) 

Boundary information can be used in the labeling process 

by incorporating it into a vector field derived from a color 

image, e.g., [9], [14]. The edge map can be employed to 

refine the delineatedregionboundaries,e.g., [1]. 

Informationabouthomogeneity and discontinuity can be 

also captured by statistical measures and fused under 

Bayesian rules, e.g., [6], [7]. 

We use two recently proposed techniques which 

facilitate a more versatile combination of edge detection 

with image segmentation. The mean shift based image 

segmentation [2] is reviewed in Section 2. A generalization 

of the traditional Canny edge detection procedure which 

also employs the confidence in the presence of an edge [11] 

is reviewed in Section 3. The new, combined image 

segmentation procedure is described in Section 4 and 

experimental results are shown in Section 5. A short 
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description of the Edge Detection and Image 

SegmentatiON (EDISON) system implementing the 

proposed technique is given in Section 6. 

2 Image Segmentation with Mean Shift 
A large class of image segmentation algorithms are 

based on feature space analysis. In this paradigm the pixels 

are mapped into a color space and clustered, with each 

cluster delineating a homogeneous region in the image. In 

the traditional clustering techniques the feature space is 

modeled as a mixture of multivariate normal distributions, 

Figure  1: 

Mode and basin of attraction based classification of a complex feature 

space. The clusters were shifted apart for better visibility. 

 

Figure 2: The gray level face image used in the examples. 

which can introduce severe artifacts due to the elliptical 

shape imposed over the clusters or due to an error in 

determining their number. 

The mean shift based nonparametric feature space 

analysis eliminates these artifacts. Let be the (unknown) 

probability density function underlying a -dimensional 

feature space, and the available data points in this space. 

Under its simplest formulation, the mean shift property can 

be written as 

 ave (1) 

where is the -dimensional hypersphere with radius centered 

on . Relation (1) states that the estimate of the density 

gradient at location is proportional to the offset of the mean 

vector computed in a window, from the center of that 

window. The mean shift property was introduced in pattern 

recognition in 1975, and was recently applied to several 

computer vision problems. See [3] for a detailed 

presentation. 

Recursiveapplication of the meanshift property yields a 

simple mode detection procedure. The modes are the local 

maxima of the density, i.e., . They can be found by moving 

at each iteration the window by the mean shift vector, until 

the magnitude of the shifts becomes less than a threshold. 

The procedure is guaranteed to converge 

[3]. 

When the mean shift procedure is applied to every point 

in the feature space, the points of convergence aggregate in 

groups which can be merged. These are the detected modes, 

and the associated data points define their basin of 

attraction. The clusters are delineated by the boundaries of 

the basins, and thus can have arbitrary shapes. The number 

of significant clusters present in the feature space is 

automatically determined by the number of significant 

modes detected. See the example in Figure 1 for the 

decomposition of a complex 2D feature space which was 

represented through its underlying density function. 

In the color image segmentation algorithm proposed in 

[2] a five-dimensional feature space was used. The color 

space was employed since its metric is a satisfactory 

approximationto Euclidean, thus allowingtheuse of 

spherical windows. The remaining two dimensions were 

the lattice coordinates. A cluster in this 5D feature space 

thus 

 

Figure 3: Mean shift segmentation of the face image. (a) The input 

 

Figure 4: Segmentation at a higher resolution than in Figure 3. 
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contains pixels which are not only similar in color but also 

contiguous in the image. 

The quality of segmentation is controlled by the spatial , 

and the color , resolution parameters defining the radii of 

the (3D/2D) windows in the respective domains. The 

segmentation algorithm has two major steps. First, the 

image is filtered using mean shift in 5D, replacing the value 

of each pixel with the 3D (color) component of the 

5Dmode it isassociatedto. Notethat thefilteringis 

discontinuity preserving. In the second step, the basins of 

attraction of the modes, located within in the color space 

are recursivelyfused until convergence. Theresulting large 

basins ofattractionare the delineatedregions, and the value 

of all the pixels within are set to their average. See [2] and 

[3] for a complete description and numerous examples of 

the segmentation algorithm. It is important to emphasize 

that the segmenter processes gray level and color images in 

the same way. The only differenceis that in the former case 

the feature space has three dimensions, the gray value and 

the lattice coordinates. 

The mean shift based color image segmentation is 

already popular in the computer vision community and 

several implementations exist. To optimize performance 

we have reimplemented the technique. In the filtering step, 

a speed-up of about five times relative to the original 

segmenter was obtained by not applying the mean shift 

procedure to the pixels which are on the mean shift 

trajectory of another (already processed) pixel. These 

pixels were directly associated with the mode to which the 

path converged. The approximation does not yield a visible 

change in the filtered image. 

In the fusion step, extensive use was made of region 

adjacency graphs (RAG) and graph contraction with a 

unionfind algorithm [13, pp.441–449]. The initial RAG 

was built from the filtered image, the modes being the 

vertices of the graph and the edges were defined based on 

fourconnectivity on the lattice. The fusion was performed 

as a transitive closure operation on the graph, under the 

condition that the color difference between two adjacent 

nodes should not exceed . At convergence, the color of 

the regions was recomputed and the transitive closure was 

again performed. After at most three iterations the final 

labeling of the image (segmentation)was obtained. Small 

regions (the minimum size, is defined by the user) were 

then allocated to the nearest neighbor in the color space. 

Note that this postprocessing step can be refined by 

employingalook-uptable 

whichcapturestherelationbetween the smallest significant 

color difference and the minimum region size. 

The new implementation of the color image segmenter 

was also tested for equivariance under rotations on the 

lattice. That is, when the input image is rotated the 

segmented image rotates accordingly. This property 

assures that the output of the processing does not depend 

on the order in which the pixels in the image are 

processed. 

The gray level face image (Figure 2) is typical for the 

class of images used in face 

recognition/trackingapplications. The relative small 

dynamic range, the presence of highlights on the face, the 

shadows around the chin, etc., make feature extraction 

from such gray level images challenging. 

Indeed, when the image is segmented at a lower 

resolution ( ) only very few facial features are 

recovered (Figure 3), which may not be satisfactory in a 

tracking application. On the other hand, when 

theresolutionisslightlyincreased( 

) a significant clutter (nonsalient regions) appears, but 

important features such as the chin or the full contour of 

the mouthare still missed(Figure4). Notethe 

sensitivityofthe gray level image segmentation to the 

value of . 

3 Edge Detection with Embedded 

Confidence 
Edge detection is maybe the most investigated low 

level vision operation. While a large number of 

techniques were proposed, today the gradient based edge 

detectors are the ones most frequently used. They have 

three processing steps applied in sequence: gradient 

estimation, nonmaxima suppression and hysteresis 

thresholding. The edge map is derived from the input 

based on two gradient magnitude thresholds. However, 

using the gradient magnitude for decisions causes a well 

known deficiency, sharp edges with small magnitudes 

can be detected only at the expense of allowing a large 

amount of edge clutter. A recently proposed 

generalization of the gradient based edge detection 

procedure eliminates this trade-off [11]. 

The idea behind the new method is illustrated in Figure 

5. Assume that the two differentiation masks employed by 

thegradient operatoraredefined in an window. These masks, 

together with the data in the window, can be represented as 

three vectors in . The two vectors corresponding to the 

masks define the gradient subspace (a hyperplane), while 

the data is an arbitrary vector in . 

Computation of the gradient vector is equivalent to 

projectingthe data intothe subspace, its orientation being 
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the angle between the projected data and one of the mask 

vectors. Note that only the part of the data in the gradient 

subspace is employed when computing the gradient vector. 

The parameter can be used to generate an ideal edge 

prototype, i.e., a unit step-edge passing through the center 

of the window and oriented at . The value of a pixel of the 

prototype is obtained by integrating across its crosssection. 

The edge prototype is also a vector in and in 

generalwillnotbelocatedin thegradientsubspace, though, by 

definition must be in the plane of the projection and the 

data. The prototype is the template of the normalized 

pattern which would be present in the optimal case. Thus, 

the cosine of the angle between the data and the template, 

measures the confidence in the presence of an edge 

obeying the assumed model. The critical observation is that 

is computed in , thus including new information from the 

-dimensional orthogonal complement of the 

gradient subspace. Therefore, is a measure independent of 

the gradient magnitude. 

Let be the normalized ranks of the gradient magnitude 

values, i.e., the percentiles of their cumulative distribution. 

For each pixel two values are now available: and the 

confidence . Since they are independent, a –diagram can 

defined. In Figure 6a the –diagram of the face image is 

shown. Note the presence of many weak (small ) but 

accurate step-edges (large ). 

In [11] the nonlinear processing steps of the the gradient 

based edge detection, nonmaxima suppression and 

hysteresis thresholding, were generalized to exploit all the 

information available in the –diagram. Instead of gradient 

magnitude thresholds two thresholding curves were used, 

and the decisions were taken based on the sign of the 

algebraic distancesof a point from these curves. The 

traditional 

η 

θ 

Figure 5: The principle of embedded confidence generation. 

 

Figure 6: The edge detection with embedded confidence of the face 

image. (a) The –diagram, with the employed hysteresis thresholding 

curves. (b) The input with the detected edges overlayed. 

procedure which is based exclusively on gradient 

magnitude, i.e. , then is equivalent to using two vertical 

lines as thresholding curves. 

The new edge detection technique can retain pixels on 

sharp but weak edges which will be located in the upperleft 

corner of the –diagram (Figure 6a). In resulting edge map 

of the face image (Figure 6b) the contours of the chin and 

the mouth are detected. See [11] for a more detailed 

treatment of edge detection with embedded confidence and 

numerous examples. 

4 Synergetic Image Segmentation 
From the previous two sections we can concludethat 

using only the gradient magnitude information to guide the 

image segmentation is not the optimal strategy. Regions 

with sharp but weak boundaries may still remain 

undetected since their boundaries may not be adequately 

supported by the gradient. 

Analyzing the –diagrams of the pixels located on the 

boundaries of the delineated regions further strengthens 

this conclusion. When the face image is undersegmented 

(Figure 3) all the boundary pixels are located in the 

upperright corner (Figure 7a), i.e., have high gradient 

magnitudes. However, once the image is oversegmented 

(Figure 4) the boundary pixels are nonselectively dispersed 

everywhere in the –diagram (Figure 7b). 

 

 (a) (b) 
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Figure 7: The –diagrams of the boundary pixels in the segmented face 

images. (a) Undersegmentation, Figure 3a. (b) Oversegmentation, Figure 

4a. 

To incorporate all the information available in the – 

diagram, the pixel is associated with the weight , 

 

Figure 8: Synergetic segmentation of the face image. The same mean 

shift segmentationparameterswere used as in Figure 3. (a) The input with 

the region boundaries overlayed. (b) Segmented image. 

 

Figure9: The –diagram of theboundarypixels in thesynergetic 

segmentation, Figure 8a. computed as 

(2) 

where is an attribute which controls the 

blendingofgradientmagnitude andlocalpattern information. 

For the weights are taken 0. In general should be derived 

from top-down processes focused on enhancing the 

features of an object sought in the image, or should capture 

a priori global information such as ecological statistics of 

segmentation [10]. In our examples the same value was 

used for all the pixels in the image. Note that the definition 

(2) can be replaced with any other expression more suitable 

for a specific class of applications. 

The synergetic image segmentation integrates the 

weights into the mean shift based image segmenter. In the 

filtering step a weighted average is then used in (1), with 

the weights being . Since for pixels close to an edge these 

weights are small, the discontinuity preserving property of 

the mean shift based filtering is further enhanced. 

Tointegratethediscontinuityinformationintothefusion 

step, for each edge in the region adjacency graph (RAG) of 

the filtered image a boundary strength measure, is 

computed by averaging the values for the pixels on the 

boundary shared by two regions. The transitive closure 

operations are then performed on this weighted graph, with 

the additional condition of . 

The synergetic segmentation of the face image (Figure 

8)employedthe sameparametersastheundersegmentation in 

Figure 3. The size of the gradient window was , and . Most 

of the important features 

 

 (a) (b) 

 

 (c) (d) 

Figure 10: The gray level golf-cart image. (a) Input. (b) Synergetic 

segmentation. (c) Mean shift segmentation with the same parameters. (d) 

Mean shift oversegmentation. 

are now recovered, and the segmented image is a 

satisfactory rendition of the input. The –diagram of the 

boundary pixels (Figure 9) is extended toward lower 

gradient values but almost exclusively for the pixels which 

have high confidence. Compare with Figure 7. 

5 Experimental Results 
The performance of the synergetic segmentation was 

also assessed with three images of different natures. The 

548 509 gray level golf-cart image has many fine details 

and a textured background (Figure 10a). Using the 

parameters the mean shift segmentation yields the 

boundaries in Figure 10c. The synergetic segmentation, 

with , and recovers much more details (Figure 10b), like 

the contiguous contour of the road, or the hood and front 

wheel of the cart. These features cannot be extracted even 

when mean shift oversegmentation ( ) is used, 

which introduces a large amount of clutter (Figure 10d). 

The 256 256 color jelly-beans image (Figure 11a) is 

very challenging since the objects are small and many of 

them have highlights. The segmentation parameters were 
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 , , and 

. The synergetic segmentation correctly 

separates most of the objects, and also delineates the weak 

borders in the background (Figure 11b). 

Undersegmentation (Figure 11c) joins several objects, 

while oversegmentation 

( ) introduces significant clutter 

(Figure 11d). 

In the 575 437 color museum image (Figure 12a) note 

the strong illumination gradient along the side wall and the 

 

 (a) (b) 

 

 (c) (d) 

Figure 11: The color jelly-beans image. (a) Input. (b) Synergetic 

segmentation. (c) Mean shift segmentation with the same parameters. (d) 

Mean shift oversegmentation. 

fine details on the back wall. The employed segmentation 

parameters were , , and . The fusion module 

of the mean shift segmenter successfully handles the 

presence of illumination gradient and the wall is 

delineated as a single structure (Figure 12c). To recover 

the details bounded by weak edges synergetic 

segmentation is needed (Figure 12b), where these edges 

are well represented in the the employed weight map 

(Figure 12d). Note also the improved delineation of the 

cubes in the foreground. Using strong oversegmentations 

also failed to detect any of these features before the 

clutter becomes dominant. 

6 The EDISON System 
The processing modules described in this paper were 

integrated into the Edge Detection and Image 

SegmentatiON (EDISON)system. 

ThesystemisimplementedinC++,and its source code is 

available on the web at 

www.caip.rutgers.edu/riul/ 

EDISON provides a versatile graphic interface (Figure 

13) to perform any of the three basic low-level vision 

operations: discontinuity preserving filtering, 

segmentation, edge detection; both separately and 

synergistically. The user has control over any of the 

parameters, can display the original, the filtered or the 

segmented image with or without overlaying the 

boundaries of the delineated regions. The gradient, 

confidence and weight maps are shown in separate 

windows. All these images and maps can be saved for 

future processing. The edge detection module can be run 

separately. Employing vertical thresholding curves it 
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Figure 12: The color museum image. (a) Input. (b) Synergetic 

segmentation. (c)Mean shiftsegmentationwiththesameparameters. (d)The 

employed weight map. 

defaults to the traditional “Canny” technique. 

The EDISON system can also be run in command line 

mode. Both the GUI and the command line implementation 

is available for the Windows environment, and the 

command line implementation for the UNIX/Linux 

environment. 

We have succinctly described two recently developed 

computational modules performing fundamental low-level 

computer vision operations: segmentation and edge 

detection. Their strengths can be combined into a 

synergetic 

techniquewhichextractsweakbutsignificantfeaturesfrom 

images. 
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