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Abstract    

    

We have studied the ability of a small, idealized system of magnets to predict 

accurately the properties of an infinitely large system at and around a phase 

transition. Specifically, by the Ising model, we have investigated the second order 

phase transition of a ferromagnetic system into a paramagnetic system.    

    

Introduction    

    

A system of many interacting particles can exhibit a phase transition: that is, 

exhibit a change in a feature that characterizes the system. We have investigated the 

second order phase transition of a ferromagnetic system into a paramagnetic system.    

A ferromagnet exhibits a permanent macroscopic magnetization whereas a 

paramagnet exhibits some magnetic properties, but not a macroscopic magnetization. 

At a certain temperature, the critical temperature or critical point, a ferromagnetic 

system changes from one displaying macroscopic magnetization into a seemingly 

unmagnetized system — a paramagnetic system.    

This research is focused on the behavior of a small system in the critical 

temperature region. With suitable approximations it is the case that predictions made 

from such small sytems can be used to predict the properties of an infinite system in 

that same region.    

    

Methods and background    

    

This research needed a simple model with magnetic spins to show magnetic phase 

transitions. We chose one called the Ising Model (Figure 1).    
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Figure 1. Pictorial representation of the Ising model.    

    
    

The Ising Model assumes that each spin is able to point in the +z direction or the 

—z direction and that the ith spin in the system has the value of ±si. There are 

interactive forces between spins. The interaction is strongest between nearest 

neighboring spins, and the Ising Model assumes that the interaction between nearest 

neighbors is the only interaction in the system. It neglects the forces associated with 

spins further away. The energy of the system, with no external field, is then:    

   
    

    

where <nn> shows that the summing is over the nearest neighboring spins and J is    

the exchange constant. When the spins are parallel the energy is negative and the  

system attains greater stability. A system with every spin parallel to each other spin is  

a ferromagnetic system. The alignment of the spins creates a macroscopic 

magnetization. The probability of finding the model in any particular state for the 

Ising Model is proportional to the Boltzmann factor:    

   
    

    

where E is the energy defined above, k is the Boltzmann constant, and T is the    

temperature.    

Figure1 shows a small Ising Model lattice. Each arrow represents an individual 

spin and its associated direction. The central, 4 by 4 structure whose properties are of 
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interest lie inside the lines. In so small a lattice, the objects at the edges are a source 

of concern because they have fewer nearest neighbors than do the objects in the 

center. Consideration of the lines and the spins outside of the lines make it possible to 

impose what are called periodic boundary conditions and thus obtain results more 

like those that would hold for a larger and more realistic system. In implementing 

periodic boundary conditions, we treat the left side of the lattice as if it were touching 

the right side -- wrapping the lattice around so opposite sides touch. The lines of 

spins on the outside of the lattice are purposely chosen to be identical to the spins on 

the opposite side of the 4 by 4 lattice to make the wrapping possible. Figure 1 also 

illustrates the energies associated with neighboring spins. The energy equals -J when 

the spins are parallel and equals +J when the spins are anti-parallel.    

The Ising Model is an extremely simple model of a magnetic system, which, 

despite its simplifications, captures the essential physics of magnetism. The 

numerical approach used to analyze the Ising Model is called the Monte Carlo 

Method.    

The system is thought of as if it were in a heat bath. As the system gains and loses 

energy from and to the heat bath, spins are flipped causing a move to a particular 

microstate. Figure 2, from Yeomans "Statistical Mechanics of Phase Transitions" 

shows how the Monte Carlo method works:    
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Figure 2. Monte Carlo flow chart.       
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In the Monte Carlo Method, first a lattice structure is set up. The initial values for 

the individual spins and for the external field H are defined. One element in the 

lattice is chosen, its spin changed from + to - or from - to plus (flipped), and then the 

energy of the system with the new flipped spin is calculated. The element is left in its 

new position if the energy of the system is lowered by the flip (if the change in 

energy is negative). If the change in energy is positive, then the flip may or may not 

be retained. To decide whether to retain the flip we calculate a random number 

between 0 and 1. Next we calcultate from the energy of the system the probability 

(from the Boltzmann factor) that the system will attain that state. If that probability is 

greater than the random number, the spin flip is retained; if the probability is less 

than the random number, the spin is not flipped. The comparison to the random 

number allows the magnetic system to enter states of higher energy than that of a 

ferromagnet. These steps complete one Monte Carlo time step. Another element in 

the lattice is then chosen, and the process repeated for that element. This procedure is 

repeated a large number of times, so that each spin is given many chances to flip. The 

variables - energy, magnetization, susceptibility, heat capacity and absolute 

magnetization - are calculated, as well as the averages of those variables. The 

system's dependence on temperature is carried by the temperature's appearance in the 

probability term.    

    

Results, discussion, and conclusions    

    

 Plot A displays the magnetization against the temperature. It shows how the 

combination of the Ising Model and the Monte Carlo Method does detect and 

calculate a second order phase transition in a small model system, 20 by 20 in this 

case.    
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 Figure 3.Spin (20,20) Field = 0.0.    

  

    
    

    

    

The 20 by 20 system starts out at low temperatures by displaying ferromagnetic 

properties, with the magnetization approximately equal to one. As the temperature is 

increased, the spins tend to flip, and eventually the system no longer exhibits the 

macroscopic magnetization it had originally. This is the phase transition.    

Since the research centered about small system phase transitions, calculations 

were mostly on a 20 by 20 lattice and were concentrated around the critical 

temperature. A few other systems were studied for comparisons, however. The 

critical temperature for an infinite ferromagnetic to paramagnetic system studied 

through the Ising Model is approximately 2.269. The obstacle encountered with 

smaller sized systems is a dulling and broadening of the critical temperature region. 

Figure 4 and Figure 5 show, respectively, the temperature dependence of the heat 

capacity for an 80 by 80 lattice and for a 10 by 10 lattice.    
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Figure 4. Spin(80,80) Field = 0.0    

    

Figure 5. Spin (10,10) Field = 0.0    
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 For an infinite system, the heat capacity peak is finite at the critical temperature.    

One can see that for the 80 by 80 system, the peak is still a sharp one; but quickly the 

peak dulls and the critical temperature region broadens for the 10 by 10 system. 

Comparing these two graphs, one can see that the 10 by 10 system, which is 

represented by the triangular points, has a broader and more rounded peak at the 

critical temperature than does the 80 by 80 system. This effect of the decreasing 

lattice size on the critical temperature region makes calculation of the critical 

temperature more difficult.    

There are two main regions to look at for a system with a phase transition — 

above the critical temperature and below the critical temperature. Figure 6 displays 

the field dependence of the magnetization for a 20 by 20 lattice at a temperature of 

2.5, which is above the critical temperature.    

    

Figure 6. Spin (20,20) Temperature = 2.5    

    
    

The magnetization shows no discontinuity. The plot starts off linearly. The slope 

of that line is the susceptibility of the system. Due to the fact that the magnetization 

cannot be greater than one, the line gradually saturates to that limit.    

Figure 7 shows magnetization versus magnetic field strength in the region below 

the critical temperature for the 20 by 20 and the 40 by 40 lattices. The circular points 

represent the 20 by 20 lattice. The triangular points represent the 40 by 40 lattice, and 

the data points where the two systems coincide are the squared points. This plot 
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shows how the two systems' data differ at low fields, and then coincide at larger 

fields — mimicking the infinite system.    

    

Figure 7. Temperature = 2.2; Circles for Spin (20,20); Triangles for Spin (40,40).    

    
    

Plot E shows the field dependence of the susceptibility.    
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Figure 8. Temperature = 2.1; Circles for Spin (20,20); Traingels for Spin (40,40).    

    
    

The circular points represent the data for the 20 by 20 lattice and the triangles 

represent the 40 by 40 lattice data. Again in low fields the two systems show 

different values for the susceptibility, but as we increase the field, both systems' data 

coincide within their deviations. This convergence illustrates that as the field is 

increased the small model systems can mimic the properties of an infinite system.    

We conclude that there are two important regions to consider when dealing with a 

finite sample, as shown in Figure 9.    
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Figure 9. Findings.    

    
    

Within Region I, the finite system and infinite systems behave similarly, but as the 

temperature and field decrease -- this is in Region II -- the finite system does not act 

in the same way as the infinite one. It is unfortunate, however, that the critical point 

and the phase transition lie within this region.    

Further study of the magnetization and the extrapolation from the approximate 

infinite system data, the squared points, into the region of lower field would allow 

improved predictions of the infinite system within the region of the phase transition.    
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